
12/4/2021

1

1

Data Structure
Lecture 5:

Recursion, Hash Table

Instructor

Ali A. Al-Ani

Department of Computer Science

College of Science

2

Department of Computer Science

College of Science

Recursion
• Recursion is a programming technique in which a function calls itself directly or indirectly. This

powerful technique produces repetition without using loops (e.g., while loops or for loops). Thus it can

produce substantial results from very little code. Recursion allows elegantly simple solutions to difficult

problems. But it can also be misused, producing inefficient code. Recursive code is usually produced

from recursive algorithms. The recursive solution for a problem involves a two-way journey:

1. First we decompose the problem from the top to the bottom

2. Then we solve the problem from the bottom to the top.

• Recursion allows us to write elegant solutions to problems that may otherwise be very difficult to

program., e.g. Games of all types like towers of hanoi problem or chess.

12/4/2021

2

3

Department of Computer Science

College of Science

Recursion

• The Three Laws of Recursion: All recursive algorithms must obey three important laws:

1. A recursive algorithm must have a base case.

• For example: consider the following recursive method:

void badPrint(int k)

{

cout<<k;

badPrint(k + 1);

}

4

Department of Computer Science

College of Science

Recursion

• Note that a runtime error will occur when the call badPrint(2) (k = 2) is made (in particular, an error

message like "Stack Over flow Error" will be printed, and the program will stop).

• This is because there is no code that prevents the recursive call from being made again and again and

eventually the program runs out of memory. This is an example of an infinite recursion.

• So the role is "Every recursive method must have a base case -- a condition under which no recursive

call is made -- to prevent infinite recursion".

12/4/2021

3

5

Department of Computer Science

College of Science

Recursion

2. A recursive algorithm must change its state and move toward the base case to prevent infinite

recursion. Consider this example:

void badPrint(int k) {

if (k < 0) { return; }

cout<< k; badPrint2(k + 1); }

• The above example does have a base case, but the call badPrint(2) (k = 2) will still cause an infinite

recursion due to there is no progress toward the base case. So Every recursive method must make

progress toward the base case to prevent infinite recursion.

6

Department of Computer Science

College of Science

Recursion

• A recursive algorithm must call itself, recursively: A recursive subroutine is one that calls itself, either

directly or indirectly. To say that a subroutine calls itself directly means that its definition contains a

subroutine call statement that calls the subroutine that is being defined. To say that a subroutine calls

itself indirectly means that it calls a second subroutine which in turn calls the first subroutine (either

directly or indirectly).

• Either Directly:

void f() {

... f() ... }

• Or Indirectly:

void f() { ... g() ...}

void g() { ... f() - }

12/4/2021

4

7

Department of Computer Science

College of Science

Recursion: Factorial Function

• A Recursive Implementation of the Factorial Function: To demonstrate the mechanics of recursion,

we begin with a simple mathematical example of computing the value of the Factorial Function.

• The factorial of a positive integer n, denoted n!, is defined as the product of the integers from 1 to n. If

n = 0, then n! is defined as 1 by convention. More formally, for any integer n>=0;

• For Example, 5! = 5 * 4 * 3 * 2 * 1 = 120. The factorial function is important because it is known to

equal the number of ways in which n distinct item can be arranged into a sequence, that is, the number

of permutations of n items.

8

Department of Computer Science

College of Science

• A recursive solution often leads to short and elegant code. Compare the recursive solution with the

iterative solution (n = 3) :

• Recursive solution

int factorial(int n){

if(n == 0)

return 1;

else

return n * factorial(n - 1);

}

Recursion: Factorial Function

• Iterative solution

int factorial(int n){

int product = 1;

while(n >1){

product * = n;

n --; }

return product; }

12/4/2021

5

Fact(1) = 1 * 1 Fact(0) = 1

3 * Fact(3-1)

9

Department of Computer Science

College of Science

• We can illustrate the execution of a recursive function definition by means of a recursion trace.

Recursion: Factorial Function

3 * Fact(2)

Stack

1 * Fact(0)

2 * Fact(1)

3 * Fact(2)

Stack

1 * Fact(0)

2 * Fact(1)

3 * Fact(2)

Stack

2 * Fact(1)

3 * Fact(2)

Stack

6

Stack

10

Department of Computer Science

College of Science

1. Write a recursive procedure to compute the Fibonacci sequence and Graph the resulting (Trace). Noted

The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, -. Each number after the second is the sum

of the two preceding numbers. This is a naturally recursive definition:

2. Write a recursive procedure to compute the greatest common divisor (GCD) algorithm? and Graph the

resulting (Trace).

Recursion: Home Work

12/4/2021

6

11

Department of Computer Science

College of Science

• A hash table (also called a map, a lookup table, an associative array, or a dictionary) is a container

that allows direct access by any index type.

• Hash Table is a data structure which stores data in an associative manner. In a hash table, data is

stored in an array format, where each data value has its own unique index value. Access of data

becomes very fast if we know the index of the desired data.

• Examples of such applications include a compilerAs symbol table and a registry of environment

variables. Both of these structures consist of a collection of symbolic names where each name serves as

the ;address< for properties about a variable=s type and value.

Hash Table

12

Department of Computer Science

College of Science

• In general, a hash table consists of two major components, a bucket array and a hash function.

1. A bucket array for a hash table is an array A of size N, where each cell of A is thought of as a ;bucket<

(that is, a collection of key-value pairs) and the integer N defines the capacity of the array. If the keys

are integers well distributed in the range [0,N A1], this bucket array is all that is needed.

Hash Table

0 1 2 3 4 5 6 7 8 9

A B C Q Y

12/4/2021

7

13

Department of Computer Science

College of Science

• If our keys are unique integers in the range [0,N A1], then each bucket holds at most one entry. Thus,

searches, insertions, and removals in the bucket array take O(1) time. This sounds like a great

achievement, but it has two drawbacks.

A. First, the space used is proportional to N. Thus, if N is much larger than the number of entries n

actually present in the map, we have a waste of space.

B. The second drawback is that keys are required to be integers in the range [0,NA1], which is often not

the case. if there are two or more keys with the same hash value, then two different entries will be

mapped to the same bucket in A. In this case, we say that a collision has occurred.

Hash Table

14

Department of Computer Science

College of Science

2. A hash function, A hash function is any function that can be used to map a data set of an arbitrary size

to a data set of a fixed size, which falls into the hash table. The values returned by a hash function are

called hash values, hash codes, hash sums, or simply hashes. To achieve a good hashing mechanism, It

is important to have a good hash function with the following basic requirements:

1. Easy to compute: It should be easy to compute and must not become an algorithm in itself.

2. Uniform distribution: It should provide a uniform distribution across the hash table and should not

result in clustering.

3. Less collisions: Collisions occur when pairs of elements are mapped to the same hash value. These

should be avoided or resolve.

Hash Table

12/4/2021

8

15

Department of Computer Science

College of Science

• A collision occurs when two pieces of data when run through the hash function yield the same hash

code. Presumably we want to store both pieces of data in the hash table, so we shouldn=t simply

overwrite the data that happened to be placed in the first. We need to find a way to get both elements in

to hash table while trying to preserve quick insertion and lookup. Various techniques are used to

manage this problem:

1. chaining,

2. re-hashing,

3. using neighboring slots (linear probing),quadratic probing, random probing.

Hash Table

16

Department of Computer Science

College of Science

• Ex 1: Suppose we have names items {Tim, Max, Sam}, and the method of determining

a hash key is Key = sum ASCII codes Mod (%) Table Size

Hash Table

Hash FunctionData Item

Tim

Max

Sam

Key Bucket

0

1 Tim

2

3 Sam

4

5

6

7

8 Max

9

10

T = 84, i = 105 , m = 109 sum = 298 % 11 = 1

M = 77 , a = 97, x = 120 sum = 294% 11 = 8

S = 83, a = 97, m = 109 sum = 289 % 11 = 3

12/4/2021

9

17

Department of Computer Science

College of Science

• Ex 2: Suppose we have integer items {26, 70, 18, 31, 54, 93}, and the method of determining

a hash key is: Hash Key = Key Value % Table Size

Hash Table

Hash Function
Data Item

26

70

18

31

54

93

40

Key Bucket

0 70

1 31

2 40

3 93

4 54

5

6 26

7

8 18

9

26 % 10 = 6

70 % 10 = 0

18 % 10 = 8

31 % 10 = 1

54 % 10 = 4

93 % 10 = 3

40 % 10 = 0 collision =2

18

Department of Computer Science

College of Science

• If we insert item (40) in our data items, it would have a hash value of (0) (40 % 10 = 0). But 70 also

had a hash value of 0, it becomes a collision problem. To solve this problem there are different

methods and we will use one of the them that is the Linear probing method:

• Hash Key for (40) = 40 % 10 = 0, Position 0 is occupied by 70. Using Linear Probing method:

• Hash Key (40) = (Hash Key (40) + 1) % table-size  0 + 1 % 10 = 1. But also the position 1 is

occupied by 31, Then we keep try to the next position and so on until we find the empty position:

• Next position = 1 + 1 % 10 = 2 Position 2 is empty, so 40 is inserted there.

Hash Table: collision

12/4/2021

10

19

Department of Computer Science

College of Science

a b c d e f g h i j k l m n

97 98 99 100 101 102 103 104 105 106 107 108 109 110

o p q r s t u v w x y z

111 112 113 114 115 116 117 118 119 120 121 122

A B C D E F G H I J K L M N

65 66 67 68 69 70 71 72 73 74 75 76 77 78

O P Q R S T U V W X Y Z

79 80 81 82 83 84 85 86 87 88 89 90

Table of characters ASCII codes

20

Department of Computer Science

College of Science

The End

